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Big Data and High Performance Computing  [&.
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Use high performance computing to address compute challenges
posed by problem scales of interest to DoD/IC




Motivating Graph Analytics Applications J&:.

ISR Social Cyber

» Graphs represent entities * Graphs represent * Graphs represent
and relationships detected relationships between communication patterns of
through multiple sources individuals or documents computers on a network

* 1,000s — 1,000,000s tracks * 10,000s — 10,000,000s - 1,000,000s - 1,000,000,000s
and locations individual and interactions network events

+ GOAL: Identify anomalous * GOAL: Identify hidden * GOAL: Detect cyber attacks
patterns of life social networks or malicious software

Detection of anomalies in massive datasets (very large graphs)




Statistical Detection Framework for Graphs

Signal Processing
for Graphs (SPG)

Develop fundamental graph
signal processing concepts

Demonstrate in simulation

Apply to real data
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Computational Focus: Dimensionality Reduction
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Eigensystem Example: Modularity Matrix

B=(A-E[A]) E[A 1=k k"/(2le|

. . k — degree vector
Bxi o )Lixi’l — 1""’m k;= degree(v,), v, € G(A)

Solve: le]| — Number of edges in graph G(4)

« Dimensionality reduction dominates SPG computation
» Eigen decomposition is key computational kernel

 Parallel implementation required for very large graph problems

- Fit into memory, minimize runtime

Need fast parallel eigensolvers




Outline

= Anomaly Detection in Very Large Graphs
=) = Figenanalysis and Performance Challenges

" |Improving Sparse Matrix-Vector Multiplication (SpMV)
Performance through Data Partitioning

= Partitioning: Dynamic Graphs and Sampling
= Summary
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Sandia
Dimensionality Reduction: Parallel Implementation &)z

= Using Anasazi (Trilinos) Eigensolver
= Block Krylov-Schur
= Eigenpairs corresponding to eigenvalues with largest real component
= User defined operators (don’t form matrix explicitly)

= |nitial Numerical Experiments

= R-Mat (a=0.5, b=0.125, ¢=0.125, d=0.25)
Average nonzeros per row: 8
Number of rows: 222 to 232

= Two systems
Hopper* (NERSC) -- Cray XE6 supercomputer
LLGrid (MIT LL) — compute cluster (10 GB ethernet)

= |nitially: 1D random row distribution (good load balance)

* This research used resources of the National Energy Research Scientific Computing Center, which is supported
by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
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Weak Scaling Eigensolver ) e

Runtime to Find 1st Eigenvector
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Solved system for up to 4 billion vertex graph |




Strong Scaling: Eigensolver T e

Runtime to Find 1st Eigenvector

1000.00
@=(m| | Grid 1D
es{d=Hopper 1D
100.00 -
0
)
.g
|—
10.00
R-MAT, 22 vertices
Modularity Matrix
1.00
1 4 16 64 256 1024 4096 16384
1D random Number of Cores
partitioning

Scalability limited and runtime increases for large numbers of cores |
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Sparse Matrix-Vector Multiplication ) e

= Sparse matrix-dense vector multiplication (SpMV) key
computational kernel in eigensolver

= Performance of SpMV challenging for matrices resulting from
power-law graphs
= Load imbalance
= [rregular communication
= Little data locality

= |mportant to improve performance of SpMV 10
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Strong Scaling: SpMV

1.E+01
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.. . umber of cores
partitioning
Scalability limited and runtime increases for large numbers of cores |
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Outline

= Anomaly Detection in Very Large Graphs
= Eigenanalysis and Performance Challenges

m) = |mproving Sparse Matrix-Vector Multiplication (SpMV)
Performance through Data Partitioning

= Partitioning: Dynamic Graphs and Sampling
= Summary
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Data Partitioning to Improve SpMV ) .
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y = Ax

" Partition matrix nonzeros

= Partition vector elements .
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Partitioning Objective

= |deally we minimize total execution time of SpMV
= Settle for easier objectives

= Balance computational work
= Minimize communication metric
Total communication volume
Number of messages
= Can Partition matrices in different ways
= 1D
= 2D
= Can model problem in different ways
= Graph
= Bipartite graph
= Hypergraph
14




1D Partitioning ) s,

X X X X
XXX X XXX X
XXX XXX
XX X X X X
XX XX
XXX X XXX
X XXX X XXX
XX XX
1D Column 1D Row

= Each process assigned
nonzeros for set of rows

= Each process assigned
nonzeros for set of columns

15
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Communication Pattern: 1D Block Partitioning ) e

2D Finite Difference Matrix (9 point)
' ' ' ' ‘ Number of Rows: 22
Nonzeros/Row: 9

NNZ/process
min: 1.17E+06
? max: 1.18E+06
avg: 1.18E+06
max/avg: 1.00

# Messages (Phase 1)
total: 126
max: 2

source process

Volume (Phase 1)

total: 2.58E+05
max: 4.10E+03

Nice properties:
Great load balance

% 5 % W 5 0 : Small number of messages
P=64 destination process Low communication volume

16
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Communication Pattern: 1D Random Partitioning

source process
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Number of Rows: 223
Nonzeros/Row: 8

NNZ/process
min: 1.05E+06
max: 1.07E+06
avg: 1.06E+06
max/avg: 1.01

# Messages (Phase 1)
total: 4032
max: 63

Volume (Phase 1)

total: 5.48E+07
max: 8.62E+05

Nice properties:
Great load balance

Challenges:

All-to-all communication
17
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2D Partitioning ) e,

(permuted) (permuted)

= 2D Partitioning

= More flexibility: no particular part for entire row/column, more general sets of nonzeros
= Use flexibility of 2D partitioning to bound number of messages
= 2D Random Cartesian*

= Block Cartesian with rows/columns randomly distributed

= Cyclic striping to minimize number of messages

= 2D Cartesian Hypergraph™*
= Use hypergraph partitioning to minimize communication volume

= Con: more costly to partition than random




Communication Pattern: 2D Random Partitioning () s

National
. Laboratories
Cartesian Blocks (2DR)
R-Mat (0.5, 0.125, 0.125, 0.25)

, x10 Number of Rows: 223
Nonzeros/Row: 8

NNZ/process
min: 1.04E+06
max: 1.05E+06
avg: 1.05E+06
max/avg: 1.01

n
=3
T
|

# Messages (Phase 1)
total: 448
L s max: 7

w
=
T
|

&
=
T
1

source process

Volume (Phase 1)

total: 2.57E+07
max: 4.03E+05

50+ -

Nice properties:
No all-to-all communication
Total volume lower than 1DR

60 -

I | | ] | I 0
40 50 50

P=64 destinsuation process
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Communication Pattern: 2D Random Partitioning i) Moo
Laboratories
Cartesian Blocks (2DR)

R-Mat (0.5, 0.125, 0.125, 0.25)

, it Number of Rows: 223
Nonzeros/Row: 8

T

NNZ/process
min: 1.04E+06
max: 1.05E+06
a0l - avg. 1.05E+06
max/avg: 1.01

10

# Messages (Phase 2)
total: 448
-t max: 7

source process

T Volume (Phase 2)

total: 2.57E+07
max: 4.03E+05

Nice properties:
No all-to-all communication
Total volume lower than 1DR

60 |

L L L L ! I __N

P=64 destinsai\tion pro4c0:ess i i

20
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Communication Pattern: 2D Cartesian
Hypergraph Partitioning

source process
.I.. .I.. .I-. .....I.. .I.
-
AN -
..l
-

40 S0 60

P=64 destingtion process

R-Mat (0.5, 0.125, 0.125, 0.25)
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Number of Rows: 223
Nonzeros/Row: 8

NNZ/process
min: 5.88E+05
max: 1.29E+06
avg: 1.05E+06
max/avg: 1.23

# Messages (Phase 1)
total: 448
max: 7

Volume (Phase 1

total: 2.33E+07
max: 4.52E+05

Nice properties:
No all-to-all communication
Total volume lower than 2DR

Challenges:
Imbalance worse than 2DR

21
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Improved Strong Scaling: SpMV ).

Time for 1 SpMV Operation

10.00
=0=1D random
={I=2D Cartesian random
1.00 =7=2D Cartesian hypergraph |
v
<))
g 0.10
[
0.01 '¥_
R-Mat, 223 vertices/rows NERSC Hopper*
0.00 T T T T T T
1 4 16 64 256 1024 4096

Number of cores

2D methods show improved scalability |

22
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Improved Strong Scaling: Eigensolver M.

Runtime to Find 1st Eigenvector

1000.00
@=g=»1D Random
@=?7D Random
@/w=2D Hypergraph
100.00 -

“

Q@  10.00

£

|—

1.00 \.\

: ——
R-Mat, 223 vertices —
Modularity Matrix NERSC Hopper*

1 4 16 64 256 1024 4096 16384
Number of Cores

0.10

2D methods show improved scalability |
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Outline

= Anomaly Detection in Very Large Graphs
= Eigenanalysis and Performance Challenges

" |Improving Sparse Matrix-Vector Multiplication (SpMV)
Performance through Data Partitioning

m) = Partitioning: Dynamic Graphs and Sampling

= Summary
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Challenge with Hypergraph Partitioning ) o

Time to Partition and Compute SpMV operations

1.00E+05

@{=»)D random
NERSC Hopper
PP S

1.00E+04 - “**=2D hypergraph

1.00E+03

Time (s)

1.00E+02

/ \ ~40,000 SpMVs
1.00E+01

1.00E+00

R-Mat, 223 vertices
1024 cores

1.00E-01

1 10 100 1000 10000 100000 1000000
Number of SpMV Operations

= High partitioning cost of hypergraph methods must be amortized by computing many
SpMV operations

»= Detection” requires at most 1000s of SpMV operations
= Expensive partitions need to be effective for multiple graphs

L1 norm method: computing 100 eigenvectors

25
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Experiment: Partitioning for Dynamic Graphs

Evolving Graph

Initial Graph, G, Final graph, G,
e, edges e, edges e, edges
Partition P, Partition P, Partition P,

= Key question: How long will a partition be effective?

" |nitial experiment
= Evolving R-Mat matrices: fixed number of rows, R-Mat parameters
(a,b,c,d)
= Start with a given number of nonzeros (|e,]|)
= |teratively add nonzeros until target number of nonzeros is reached
(le,l) 26




Results: Partitioning for Dynamic Graphs ) .

SpMV Time
0.12
2DR = 2D Random Cartesian
“=o==2DH 2DH = 2D Cartesian Hypergraph
0.1 -

o
o
o

0.06

Average SpMV Time (s)

o
o
s

0.02

NERSC Hopper*

1.00 2.75 4.50 6.25 8.00 9.75 11.50 13.25 15.00 16.75
el / el

Hypergraph partition surprising effective after more

than 16x |e,| edges added -




Sampling and Partitioning for Web/SN Graphs ) .

Graph Sampling and Partitioning

Apply partition
Sample E Partition G WJ{O p : | i
=(V,E’)

Input Graph, | G,=(V4,Ey)
G=(V, E) Gz =( 2,E2) G,=(Vy, E2

= Sampling + Partitioning:
1. Produce smaller graph G’ by sampling edges in graph G (uniform
random sampling), keep vertices same
Partition G’ (2D Cartesian Hypergraph)

Apply partition to G

Idea: Partition sampled graph to reduce partitioning time |

28
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Partitioning + Sampling: Partitioning Time

700
2D Cartesian Hypergraph e=(mp=16
600 e==p=64
“leep=256

> 71 hollywood-2009**: =p=1024 |

Actor network
400 1.1 M vertices, 110 M edges

Time (s)

300

200

100

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
Sampling Rate

Edge sampling greatly reduces partitioning time (by up to 8x) |
NERSC Hopper* 29
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Partitioning + Sampling: SpMV Time ~ [JE.

0.1
2D Cartesian Hypergraph
0.09 ‘O%W
0.08
007 1| hollywood-2009**: TemRsle
Actor network e={=p=64
0.06 . —
- 1.1 M vertices, 110 M edges cp=56
g 0.05 mp=1024 |
E
0.04
0.03 E—HW—H-—-E—
0.02
0 T T T T T T T T T
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

NERSC Hopper*

Sampling Rate

Resulting SpMV time does not increase for modest sampling |

30




Challenge with Hypergraph Partitioning Revisited ™ e

Time to Partition and Compute SpMV Operations

1000

2DR = 2D Random Cartesian
2DH = 2D Cartesian Hypergraph

\

~100,000 SpMVs

100

~10,000 SpMVs

10

Time (s)

hollywood-2009
1024 cores

e=(mm) DR —

e=?2DH

NERSC Hopper*

2DH w/ Sampling

0.1 T T T .
1 10 100 1000 10000 100000
Number of SpMV Operations

Sampling reduces overhead of hypergraph partitioning
(fewer SpMVs needed to amortize partitioning cost)

31
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= Qutlined HPC approach to detecting anomalies in big data
= Key component is eigensolver

= Solving resulting eigensystems challenging
= |Load imbalance
= Poor data locality

= SpMV key computational kernel

= 1D data partitioning limits performance due to all-to-all communication
= 2D data partitioning can be used to improve scalability

= 2D hypergraph partitioning promising but expensive

= Sampling can improve 2D hypergraph partitioning performance
for web/SN graphs

32



